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Double-weight optical code division multiple access (OCDMA) systems are proposed for studying differentiated 
quality-of-service transmission. Based on quadratic congruence code (QCC), we construct a one-dimensional 
double-weight code family, which can be well utilized in incoherent synchronous double-weight OCDMA 
networks. By introducing algebraic transformation to code sequences of QCC in level 1, we obtain multiple 
double-weight codes with cross-correlation 1. Under the same-bit-power assumption, the performance 
of low-weight codes can be significantly improved and is always superior to that of high-weight codes in 
double-weight OCDMA systems with power control. This property is contrary to previous conclusions under 
the same-chip-power assumption.
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As a competitive alternative for the future optical 
communication, differentiated quality-of-service (QoS) 
optical code division multiple access (OCDMA) has 
been considered as a promising technology to support 
rapid growing popularity of multi-media services[1–4]. 
For the differentiated QoS requirements, many vari-
able-weight codes have been proposed, such as 2D  
variable-weight optical orthogonal codes[5,6] and 
variable-weight prime codes by padding or removing 
pulses[7]. Besides, power control in physical layer is 
another important way of providing differentiated QoS 
in OCDMA systems[8].

Unlike the conventional schemes for differentiated 
QoS, double-weight OCDMA systems with power con-
trol have been investigated recently[2,9]. Chen et al.  
found that code-weight and power play different roles 
in the QoS transmission[2]. They concluded that high-
weight codes do not always perform better than low-
weight codes under same-bit-power assumption[9]. 
Although the performance-analytical approximation 
models as described earlier are fit for 1D and 2D 
codes, the 1D double-weight code is simpler and more 
accessible than 2D case for studying differentiated QoS 
OCDMA systems. 

In this letter, based on quadratic congruence code 
(QCC)[10,11], we construct a 1D double-weight code fam-
ily for incoherent synchronous double-weight OCDMA 
systems, named as “double-weight QCC” (DWQCC). 
Under both same-chip-power and same-bit-power assump-
tions, the mutual effect of high- and low-weight codes are 
analyzed. The results show that the proposed codes with 
low-weight can perform better than those with high-weight 
in double-weight OCDMA with power control.

QCC starts with Galois field GF(p) = {0, 1, 2,..., p - 1}  
of a prime number p ≥ 3. Firstly, a set of prime se-
quence ( ), , , , , , , , , ,(0), (1),..., ( ),..., ( 1)i j k i j k i j k i j k i j kS s s s m s p= −  
is obtained by a quadratic congruence function 

2
, , ( ) ,i j k p p p pms m i j m k= ⊗ ⊕ ⊗ ⊕  where i, j, k, m ∈ 

GF(p) and i ≠ 0. ⊗p and ⊕p denote modulo-p multi-
plication and modulo-p addition, respectively. Then 
the prime sequence Si,j,k is mapped into the binary  
sequence ( )2

, , , , , , , , , ,(0), (1), ..., ( ), ..., ( )1i j k i j k i j k i j k i j kC c c c m c p= −  
of length p2. The mapping function is given by 

	

2
, ,1, for ( ) with GF( ),

( )
0, otherwise,

i j ks m mp p
h

 Ψ = + Ψ ∈Ψ = 
 �(1)

where Ψ denotes the position of the mth 1 in the bina-
ry sequence Ci,j,k. For instance, when p = 3, i = 2, j = 1,  
k = 0, we can conclude S2,1,0 = (0, 0, 1), and thereby 
C2,1,0 = (100 100 010).

QCC has the properties of multi-level, symme-
try, and reasonably correlation[10,11]. Therefore, the 
code sets of QCC can be divided into p - 1 groups 

1 2 1{ , , ..., , ... }i pG G G G −  in level 2 and each group G1 is sepa-
rated into p different partitions ,0 ,1 , , 1{ , , ..., , ..., }i i i j i pP P P P −  
in level 1, where any partition Pi,j contains p code 
sequences , ,0 , ,1 , , , , 1{ , , ..., , ..., }.i j i j i j k i j pC C C C −

Time shifting is allowed in a synchronous OCDMA  
system. So in , ,0 , ,1 , , , , 1{ , , ..., , ..., },i j i j i j k i j pC C C C −  any 
code sequence Ci,j,k can generate a loop subset 

0 1 1, , , , , , , ,{ , ,..., ,..., }
f pi j k i j k i j k i j kC C C C

−
 by cyclic shift. Shifted 

code sequence Ci,j,kf
 is denoted as 

	 , , , , , , , , , ,( (0), (1),..., ( ),..., ( 1)),
f f f f fi j k i j k i j k i j k i j kC c c c m c p= − �(2)
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where f ∈ GF(p) denotes the number of cyclic shift and 
kf ∈ GF(p2) is the serial number of the f th code sequence 
of the kth subset. The obtained code sequences of p loop 
subsets can compose a p2×p2 matrix. Then we insert sub-
sequence at the back of each original subsequence ci,j,kf

(m) 
by the same length. So, the number of subsequences in-
creases from p to 2p. Accordingly, the corresponding orig-
inal subsequence is changed as ci,j,kf

(2m). When si,j,kf
(2m) 

(known by Eq. (1), si,j,kf
(2m) map to ci,j,kf

(2m)) satisfies 

, , , , , ,[ ] [ ( ) (2 ) ],(2 ) 2i j k i j k i j kf f f
ms m k s m k s k m m′=≠ = > ′∪ ∩ ∩  

the interleaving subsequence, denoted as xi,j,kf
(2m + 1), 

is defined as null. Here m′ ∈ GF(p - 1) means that, in 
Si,j,kf

(2m), there exists another element si,j,kf
(2m′) equal to 

si,j,kf
(2m). Otherwise, xi,j,kf

(2m + 1) is equal to ci,j,kf
(2m). 

Secondly, when , ,

1
2

(2 )
fkp i jk s m p

≤
−

  (where p  
denotes the modulo-p subtraction), we exchange the 
original subsequences with interleaving subsequences. 
Otherwise, they remain unchanged. The interleaved and 
exchanged code sequences should be a p2×2p2 matrix.

Finally, we transpose the exchanged code sequenc-
es. The transposed code sequences are a 2p2×p2 ma-
trix which consist of 2p2 code sequences of length p2 
and correspond to the original and interleaving sub-
sequences of the exchanged code sequences in column, 
respectively. Hence, the obtained code sequences can be 
divided into even and odd subsets (denoting as Ei,j,2m(kf) 
and Oi,j,2m+1(kf)), which are given by 

Since QCC has (p - 1) groups in level 2 and each group 
has p partitions in level 1[10,11], based on partitions we 
can get p(p - 1) multiple code sets and each code set 
consists of 2p2 codes of length p2. For sake of illustration, 
let wch and wcl denote high- and low-weights (wch ≥ wcl),  
respectively. For any code set of DWQCC in level 1, 
it contains two weights (wch, wcl) and the sum of high- 
and low-weights is p + 1 (wch + wcl = p + 1). Further-
more, the maximum cross-correlation of any two code 
sequences is λc = 1 and the auto-correlation constraint 
of any code sequence is λc = 2.

Proof: When m = 0, by 2
, , ( )i j k p p p ps m i m j m k= ⊗ ⊕ ⊗ ⊕   

we can conclude si,j,k(0) = k. Thus, in Si,j,k there is 
at least one value si,j,k(m)that satisfies si,j,k(m) = k,  
where {0,1,..., 1},m p∈ −  that is, at least one interleav-
ing subsequence will be not null. On the other hand, 
when si,j,kf

(2m) satisfies Eq. (3), xi,j,kf
(2m + 1) will be 

( )
−

−− −− −

+

   Ε =    

Ο = + + +
0 1

( 1)0 1 0 1

T T T T T T
, ,2 , ,0 , ,0 , ,0 , , , ,( 1) , ,( 1)

T T
, ,2 1 , ,0 , ,0 , ,0

( ) (2 ) ,..., (2 ) ,..., (2 ) ,..., (2 ) ,..., (2 ) ,..., (2 ) ,

( ) (2 1) , ..., (2 1) , ..., (2 1
f p

pp pf fi j m f i j i j i j i j i j p i j p

i j m f i j i j i j

k c m c m c m c m c m c m

k x m x m x m( ) ( )( )−− − −




 + + +
 0 1

T T T T
, ,( 1) , ,( 1) , ,( 1)) ,..., (2 1) , ..., (2 1) ,..., (2 1) .

f pi j p i j p i j px m x m x m

� (3)

null. In this case, at most one interleaving subsequence 
is non-null. Combining the above two cases we can de-
duce that one and only one interleaving subsequence 
is non-null. In other words, the weight of interleaving 
subsequences is 1. In addition, the weight of original 
subsequences is p. Hence, the sum of code weights of 
the original and interleaving subsequences is p + 1. 

According to the above, each code set of QCC can 
be divided into p loop subsets. Every loop subset  
( , ,0 , ,1 , , , ,( 1), ,..., ,...,

f f f fi j i j i j k i j pC C C C − ) has the same properties 
due to adding 1 shift. Similarly, rows and columns of 
any subset have the same number characteristics due to 
cyclic shift. Therefore, under given conditions, the num-
ber of interchange subsequences (denoting as wc) of any 
two adjacent sequences is the same in columns. That is, 
the weight of original sequences becomes p - wc and the 
weight of corresponding interleaving sequences is 1 + wc.  
Hence, the transposed code sequences contain two 
weights (wch, wcl) and wch, wcl = p + 1 as the even and 
odd subsets derive from the original and interleaving 
sequences of interchanged sequences, respectively.

Since any interleaving sequence contains only one non-
null element and is identical to the original subsequenc-
es, the interchange between original and corresponding 
interleaving subsequences does not deteriorate the 
cross-correlation but gets two variable weights in col-
umns. In addition, the transposition operation does not 
worsen the cross-correlation of codes as well. The rea-
sons are as follows. In Si,j,k, only one element is single 

and the others will appear in pairs due to the sym-
metry of QCC[11]. For any number appearing twice in 
a row, the two numbers of other loop subsets, locating 
in the same position, will exactly come in pairs. How-
ever, the two numbers of different loop subsets that 
locate in the same position are not equal due to adding 
1 shift. According to the mapping relationship, differ-
ent columns of interchanged code sequences will map 
to different subsets of the transposed code sequences. 
Similarly, different numbers in each column will map 
to different code sequences of the corresponding trans-
posed subset. Hence, the maximum cross-correlation of 
codes is still 1. However, the numbers coming in pairs 
will make the auto-correlation equal to 2 according to 
the auto-correlation definition. 

By relaxing the auto-correlation constraint, we dou-
ble the code cardinality and get multiple double-weight 
code sets for a given prime number p. The weight 
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Table 1.  Weight Distribution of DWQCC for Different p

p Weight Distribution (wch, wcl) Θ L

3 (1,3) (2,2) 18 9 

5 (1,5) (2,4) (3,3) 50 25 

7 (2,6) (3,5) (4,4) 98 49 

11 (3,9) (4,8) (5,7) (6,6) 242 121 

13 (4,10) (5,9) (6,8) (7,7) 338 169 

17 (5,13) (6,12) (7,11) (8,10) (9,9) 578 289 

19 (7,13) (8,12) (9,11) (10,10) 762 381 

23 (8,16) (9,15) (10,14) (11,13) (12,12) 1058 529 

29 (9,21) (10,20) (11,19) (12,18) (13,17) (14,16) (15,15) 1682 841 

distribution, code cardinality, and code length of 
DWQCC for different p are shown in Table 1, where Θ 
denotes the code cardinality of DWQCC in level 1 and 
L represents the length of code sequence.

It is necessary to evaluate the hit probability of the 
code sequences of DWQCC. The possibility of getting 
one hit of the desired code with high-weight wch being 
hit by an interfering code with high-weight wch, denoted 
as qch, ch,1, is given by 

	
( )ch ch

ch,ch,1 ch 2

11( ) .
2 1

w w
q w

p

−
= ×

−
� (4)

The factor 1/2 comes from the assumption that data 
bit ones and zeros are transmitted with equal probabil-
ity. In the numerator, wch(wch - 1) means that any two 
code sequences of DWQCC will cause wch(wch - 1) hits. 
And in the denominator, p2 - 1 represents the possible 
number of interfering code sequences, out of a total of 
p2 code sequences. Similarly, the hit probability among 
low-weight codes, denoted as qcl,cl,1, is given by 

	 cl cl
cl,cl,1 cl 2

( 1)
( ) .

2( 1)
w w

q w
p

−
=

−
� (5)

The possibility of getting one hit of the desired code 
with wch (or wcl) being hit by an interfering code with 
wcl (or wch), denoted as qch,cl,1(or qcl,ch,1 ), is simply given 
by 

	 ch cl
ch,cl,1 ch cl cl,ch,1 ch cl 2

( , ) ( , ) .
2

w w
q w w q w w

p
= = � (6)

Multiple access interference (MAI) is the dominant 
noise in any on–off keying OCDMA systems. To focus 
on the effect of double-weight codes, we ignore the 

background noise, shot noise, and thermal noise, and 
assume that all optical codes have the same lengths 
representing the same transmission rate. Under the 
same-bit-power assumption, the chip powers (

chwΦ
and

clwΦ ) of the codes with wch and wcl are related by 

ch clch cl .w ww w× Φ = × Φ  We can conclude 
ch clw wΦ ≤ Φ  as 

wch ≥ wcl. In other words, the low-weight codes always 
carry more chip power per bit duration than that of 
high-weight codes. So the amount of MAI caused by 
interfering low-weight codes onto a mark chip of the 
desired high- and low-weight codes always constitutes 
one complete hit. Hence, the error probability Pch of 
the desired high-weight code is the same under both 
same-chip-power and same-bit-power assumptions and 
is given by[9] 

	

ch
ch

cl

1

ch,ch,1ch
eh ch

ch

ch,cl,1

ch

1( ) ( 1) 1
2

1 ,

Mw
r

r o

M

rqw
P w

wr

rq
w

−

=

  
= − −     

 
× − 

 

∑

� (7)

where Mcl and Mch denote the numbers of the low- and 
high-weight users, respectively. However, the amount 
of MAI caused by interfering high-weight codes onto 
a mark chip of the desired low-weight code is differ-
ent from that caused by interfering low-weight codes. 
Each hit generated by interfering high-weight codes 
can only constitute wcl/wch of one complete hit onto a 
mark chip of the desired low-weight code. Hence, the 
error probability Pel of the desired low-weight code is 
given by[9] 

	
l ch

cl l
1c ( )c

cl,cl,1 cl,ch,1cl cl
el cl

0 cl

( )1( ) ( 1) 1 1 ,
2 ( )

M Mw c w uu
r

u o r o v

rq vqw c w uu
P w

r u c w uu v

−
−

= = =

         − = − − × × −        −        
∑ ∑ ∑ � (8)
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Fig. 1. Hard-limiting error probabilities, Peh and Pel(p = 29,  
wch + wcl = 30, Mch = Mcl = 30), of codes versus variation of weights 
(wcl and wch) under both same-chip-power and same-bit-power 
assumptions.

Fig. 2. Hard-limiting error probabilities, Peh and Pel , of codes 
high-weight and low-weight versus the number of active users 
Mcl (or Mch ) for a given p = 29.

Table 2. Hit Probabilities of Multiple Double-weight Code Sets for a Given p = 29 

(wch, wcl) (9,21) (10,20) (11,19) (12,18) (13,17) (14,16) (15,15) 

qcl,cl,l 3/70 3/56 11/148 11/140 13/140 13/120 1/8 

qch,ch,l 1/4 19/84 27/140 51/280 17/105 15/105 1/8 

qch,cl,l 189/1682 100/841 209/1682 108/841 221/1682 112/841 225/1682 

where ch

cl

w
c

w
=  and [.] is the ceiling function. Particularly,  

when wch = wcl = (p + 1)/2 (as wch + wcl = (p + 1), the 
DWQCC becomes conventional variable-weight code. 
The error probability of the double-weight codes are 
equal under both same-bit-power and same-chip-power 
assumptions (denoting as Pe0), and is given by[12] 

( )
ch cl

ch(cl)
( ) 1

ch(cl),ch(cl),1ch(cl)
e0 ch(cl)

0 ch(cl)

1( ) 1 1 .
2

M Mw
r

r

rqw
P w

wr

+ −

=

  
= − −  

   
∑

	
� (9)
According to Eqs. (4)–(6), the hit probabilities qch,ch,l, 
qcl,cl,l, and qch,cl,l (qch,cl,l) of multiple double-weight code sets 
for a given p are shown in Table 2 (where qch,cl,l = qcl,ch,l).

Figure 1 shows the hard-limiting error probabilities, 
Pel and Peh (p = 29, wch + wcl = 30, Mch = Mcl = 30), of 
codes versus the variation of weights (wcl and wch ) under 
both same-bit-power and same-chip-power assumptions. 
As shown in Fig. 1, Peh of the high-weight code and Pel 
of the low-weight code vary as the high and low weights 
change. Under the same-chip-power assumption, Peh is 
always lower than Pel (curves surrounded by the upper 
ellipse in Fig. 1). Moreover, Peh ascends as the high 

weight decreases while Pel declines as the low weight 
increases. The reason is that the high-weight codes 
always carry higher power under the same-chip-power 
assumption. However, Pel of the low-weight code is 
observably superior to Peh of the high-weight code under 
the same-bit-power assumption (curves surrounded by 
the lower ellipse in Fig. 1), which is contrary to the con-
clusion under the same-chip-power assumption. This is 
because the low-weight codes carry higher power under 
the same-bit-power assumption and, simultaneously, the 
proposed codes have the lower hit probability which fur-
ther improves the bit-error rate performance of the low-
weight codes. Hence, the performance of double-weight 
codes can be well tuned by varying code weight and 
power. It is helpful for power-sensitive applications in 
optical networks and sensor identification in fiber-sensor 
systems with the use of optical codes. 

Figure 2 shows the hard-limiting error probabilities, 
Peh and Pel(p = 29), of codes with high weight and 
low weight versus the number of active users (Mcl or 
Mch) under the same-bit-power assumption. As shown 
in Fig. 2 (solid lines), when the low-weight users Mcl 
increase and the high-weight users Mch are fixed to 100, 
Pel is superior to Peh. Although a large number of active 



 	 110608-5�

COL 12(11), 110608(2014) 	 CHINESE OPTICS LETTERS� November 10, 2014

users always bring a greater MAI, an appropriate 
amount of low-weight users can be transmitted by 
high quality in OCDMA systems with power control as 
many high-weight users exist in advance. It is because 
the low-weight codes have the higher power and lower 
hit probability that the defense against MAI is stron-
ger. The case can be well applied to high-quality com-
munication services under strong noise corruption. As 
illustrated in Fig. 2 (dashed lines), Pel is lower than 
Peh when Mch is small and Mcl=100 is fixed. However, 
Pel deteriorates faster than Peh as Mch increases, and Pel  
becomes worse than Peh as Mch increases beyond a 
certain value. It is because the high-weight codes 
have more number of pulses, the probabilities of all 
mark positions being hit are more than those of the 
low-weight codes. 

In conclusion, the 1D double-weight codes are sim-
pler and more viable than 2D case in implementation 
of OCDMA with QoS requirements. The proposed 
DWQCC not only doubles the code cardinality of QCC 
by interleaving subsequences but also provides multiple 
double-weight codes with cross-correlation 1. We analyze 
that the performance of low-weight codes is observably 
improved and superior to those of high-weight codes 
in double-weight OCDMA systems with power control. 
Moreover, the results indicate that, when there are 
many high-weight users in the network, double-weight 
OCDMA systems still allow an appropriate amount of 
low-weight users to transmit with high quality. Because 

the low-weight codes have the higher power and lower 
hit probability, the defense against MAI is stronger.

This work was supported by the National “863” Pro-
gram of China (No. 2012AA011301) and the National 
“973” Program of China (No. 2010CB328302).
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